Fundamental groups of projective discriminant complements
نویسندگان
چکیده
منابع مشابه
Fundamental Groups of Complements of Branch Curves as Solvable Groups
In this paper we show that fundamental groups of complements of curves are “small” in the sense that they are “almost solvable”. Thus we can start to compute π2 as a module over π1 in order to produce new invariants of surfaces that might distinguish different components of a moduli space. 0. Applications of the calculations of fundamental groups to algebraic surfaces. Our study of fundamental ...
متن کاملOn projective plane curves whose complements have finite non-abelian fundamental groups
The topological fundamental group π1(P \C0) is isomorphic to the binary 3-dihedral group D̃3 := 〈 α, β | α = β = (αβ) 〉 of order 12 (cf. [11] [4; Chapter 4, §4]). In [1], Abhyankar studied the complement of the three cuspidal quartic over an algebraically closed field k of arbitrary characteristics. He showed that, if char k 6= 2, 3, then the tame fundamental group of the complement is isomorphi...
متن کاملOn the Fundamental Groups of the Complements of Hurwitz Curves
It is proved that the commutator subgroup of the fundamental group of the complement of any plane affine irreducible Hurwitz curve (respectively, any plane affine irreducible pseudoholomorphic curve) is finitely presented. It is shown that there exists a pseudo-holomorphic curve (a Hurwitz curve) in CP whose fundamental group of the complement is not Hopfian and, respectively, this group is not...
متن کاملFundamental Groups of Complements of Plane Curves and Symplectic Invariants
Introducing the notion of stabilized fundamental group for the complement of a branch curve in CP, we define effectively computable invariants of symplectic 4-manifolds that generalize those previously introduced by Moishezon and Teicher for complex projective surfaces. Moreover, we study the structure of these invariants and formulate conjectures supported by calculations on new examples.
متن کاملNon-finiteness Properties of Fundamental Groups of Smooth Projective Varieties
For each integer n ≥ 2, we construct an irreducible, smooth, complex projective variety M of dimension n, whose fundamental group has infinitely generated homology in degree n + 1 and whose universal cover is a Stein manifold, homotopy equivalent to an infinite bouquet of n-dimensional spheres. This non-finiteness phenomenon is also reflected in the fact that the homotopy group πn(M), viewed as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2009
ISSN: 0012-7094
DOI: 10.1215/00127094-2009-055